
Setting Up a Broadcast Ready Virtual
Studio with Position, Focus and Zoom
Tracking in the Real-time Engine
Unity3D

Adams Jente
AP University College
2000 Antwerpen, Belgium
jente.adams@gmail.com

Kovaleva Polina
UAS Ansbach
91522 Ansbach, Germany
kpolina007@gmail.com

Bujoková Pavlína
Tomas Bata University in Zlín
760 01 Zlín, Czeck Republic
pavlina.bujok@gmail.com

Saup Sonja
UAS Ansbach
91522 Ansbach, Germany
kishaja1337@gmail.com

Valéry Dorian
École Nationale d‘Ingénieurs
de Tarbes
65 000 Tarbes, France
d.valery12@gmail.com

Sanmartín Marco Laura
Universitat Politécnica de
Catalunya EPSEVG
08800 Vilanova i la Geltrú, Spain
lau_sanmar4@hotmail.com

Amouzegh David
Université de Valenciennes
59313 Valenciennes, France
david.amouzegh@wanadoo.fr

Trim Robert
Utah Valley University
Orem, UT 84058, USA
trimro@uvu.edu

Kastel Thiemo
St. Pölten University of Applied
Sciences
3100 St. Pölten, Austria
thiemo.kastel@fhstp.ac.at
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright@2016 by NUST-FCI
2016 International Conference on Culture & Computer Science (ICCCS), Namibia
University of Science and Technology (NUST), Windhoek, Namibia
ACM ISBN 978-99916-903-0-8.

Abstract
Virtual Reality is becoming more and more popular among
all areas in multimedia. Using Virtual Reality in live pro-
duction can make a significant difference in the content
that can be created. There are two primary approaches
to create a Virtual Reality environment: static and dynamic.
In the dynamic system the camera can change position,
zoom and focus with the virtual environment being syn-
chronised with the camera and set to create a seamless
visual world. The authors explored the possibility of mak-
ing an inexpensive dynamic virtual system based on the
game engine Unity3D which is the first one of its kind. In
the project the authors were able to: track the zoom and po-
sition of the camera, chroma key the live set and connect
this data to the virtual environment within Unity3D in real
time. Through team effort, including project management,
marketing strategies, technical setup, and creative input a
live show was produced with our dynamic system.

Author Keywords
Virtual Studio; Tracking System; Unity3D; Real-time; Broad-
cast; TV Live Show; Focus & Zoom Tracking

ACM Classification Keywords
I.3 [COMPUTER GRAPHICS]: Three-Dimensional Graph-
ics and Realism; I.3.7 [Three-Dimensional Graphics and
Realism]: Virtual Reality

lbkastel
Rechteck



1. Introduction
Virtual Reality is one of the fastest growing areas reaching
a broad spectrum of users from various fields, through the
implementation of this technology. This paper introduces a
unique approach to the application of a dynamic virtual stu-
dio system based on the Unity3D game engine. The project
focus is to prove the working connection between a physical
and a virtual camera, and assure its performance for live
production. Available resources for this specific project were
financial resources and technical equipment from the St.
Pölten University of Applied Sciences, which are tracking
system, PC-Workstations, HD-Cameras and a HD-Video
Studio environment as well as the workforce of seven stu-
dents. The project client is the university itself.

Figure 1: Alignment of the gear on
the camera lens (below) and the
gear on the sensor (above)

Figure 2: Sensor mounting frame
position on the camera lens

The research was organised in the context of the European
Project Semester (EPS) hosted by the St. Pölten University
of Applied Sciences, Austria. The project team consists of
seven students from different countries (France, Germany,
Czech Republic, Spain, and Belgium) and a team of super-
visors. This paper discusses the general approach of virtual
studios for live broadcasts and explains the resulting solu-
tion for the HD-Videostudio of the St. Pölten UAS.

2. Technical approach and setup
2.1 Lookout on the market
Why exactly is a game engine a suitable software for dy-
namic live broadcasts? The software for live dynamic virtual
studios require a substantial financial investment. There-
fore a more financially friendly solution to this is the use of
a game engine. Games and videos have a lot in common,
both show the story in moving pictures and both are made
of a certain amount of frames per second.

One of the goals of the project was to act within a small
budget. A free and well documented game engine is prefer-

able. Unity3D does fit these needs and is one of the most
versatile and popular engines out there. It is easily ex-
pandable with plugins and it supports three main program-
ming languages; with the two most popular being C# and
JavaScript.

2.2 Sensor Mounting Frame
In order to connect the pictures of the virtual and physical
cameras dynamically two major things have to be tracked
on the physical camera to reproduce the changes in Unity3D;
the position of the camera and the the zoom and focus.
When the operator shifts these values on the physical cam-
era these changes will be applied to the virtual background.
The connections between the virtual and physical camera
are:

• Sensors tracking zoom and focus.
• IR cameras tracking the rigidbodies.

Physical data communication to the Unity3D engine is pro-
vided through Wi-Fi and the Ethernet connections, between
the cameras and these devices.

- 2.2.1 Tracking the zoom and focus
In order to track the zoom and focus two sensors are re-
quired. Sensors used in the project are both rotary en-
coders. These sensors are mounted to the camera equipped
with gears that mesh with the gear on the lens.

The first step in creating the mounting frame was to take
measurements of the lens, the camera and the surrounding
assets. With this information the design of the mounting
piece for the sensors was created.

The main function of the sensors is to precisely track the ro-
tation of the rings on the lens. Therefore the gears mounted
on the sensors needed to be as small as possible, so the



range of use of the sensors would be bigger. The bigger the
range of use, the better the resolution of the tracking.

The diameter of the gears is half of the diameter of the lens.
So when the lens turns 90º, which is the maximum rota-
tional range, the sensors will turn for 180º. So the final ratio
is 2:1 (Fig. 1). In the final setup the sensors track the zoom
and focus and output precise data (Fig. 2).

- 2.2.2 Tracking the position and rotation
The camera position and rotation is tracked by four IR cam-
eras which track the changes in the placement of rigidbod-
ies. The rigidbodies have four reflecting spheres and have
to be attached to the camera. To have the best position of
the rigidbody and allow easy attachment on the camera, a
slider was deemed as the best solution. The slider (Fig. 3)
is mounted on the highest position, on the handle, in order
to make the rigidbody visible for all IR cameras.

Figure 3: Placement of the
rigidbody on its slider

- 2.2.3 Manufacturing
All the pieces were designed with a 3D CAD software and
were produced with 3D printers (XYZ Da Vinci 1.0 Junior
and Witbox 2). The used material is PLA. 3D printers allow
to produce fast prototypes; it is useful for testing purposes.

2.3 Unity3D
The system uses Unity3D v4.6 pro or newer to display the
virtual background and to calculate the position, rotation,
zoom and focus of two virtual cameras. Said system is us-
ing the data of the position tracker and rotary encoders that
track the position, pan, tilt, pedestal, zoom, and focus of the
corresponding physical cameras. Unity3D is a game engine
and is primarily used by indie game developers.

- 2.3.1 Position tracking
The IOtracker system with four infrared cameras and rigid-
bodies is used for position tracking. The rigidbodies reflect

the infrared light emitted by the infrared cameras, and the
software calculates the position, pan, tilt, pedestal and
dutch tilt of the rigidbodies. Due to the unique shape of
the rigidbodies, the system can recognize them. The po-
sition is calculated by the IOtracker software and sent in an
OSC packet over Ethernet. The OSC packet contains nine
fields for: frame number, rigidbody, the xyz coordinates,
yaw, pitch, roll and W, a value that is in relation to the yaw,
pitch and roll.

In Unity3D a C# script listens for the OSC packet of the
tracking system. Another C# script triggers an event every
time an OSC packet is received. The data from the OSC
packet is used to align the position, pan, tilt, pedestal and
dutch tilt of the virtual camera to the physical camera. The
C# scripts work with two threads for the position tracking
which are two processes which are executed simultane-
ously. Unity3D changes the position only each frame be-
cause of its inner workings.

The distance has to be synchronised, so that the virtual
camera moves inside the scene relatively to the distance
of the physical camera. As every scene does not have the
same dimensions, the dimensions provided by the tracking
system should be divided by a value that makes the move-
ment of the physical and the virtual camera match.

- 2.3.2 Zoom and focus tracking
The zoom and focus are tracked by RE22 rotary encoders,
two encoders for each camera. The encoders are con-
nected to an MSX-E1701 interface which reads the sensors
and transmits the data over Ethernet using the SOAP pro-
tocol. Unity3D is using a C# script to send a SOAP packet
encapsulated in a http packet to the interface and listens
for the response. The script loops twice for each camera to
track the zoom and focus steps taken by the physical cam-
era, and changes the zoom and focus for its corresponding



virtual camera accordingly. The zoom is changed by moving
the camera forward and the focus is changed by the depth
of field value.

The script moves the virtual camera forward in little steps,
which have to be executed multiple times to match the
zoom distance in the corresponding cameras. The focus
depends on the lens of the camera and the lens has to be
measured before the synchronisation process.

Figure 4: Studio setup including all
components

Figure 5: Dimensions of virtual
studio and set

2.4 Production
In order to easily integrate the created electronic and me-
chanical technologies the control room required a unique
setup. Key to the project success, with the programming
part done, was to figure out different ways to set up the con-
trol room in order to avoid signal delay between the cam-
eras.

The data was distributed between two computers and trans-
mitted to Unity3D. Once the data was collected, the back-
ground scene had to be adapted to the position, rotation
and the field of view of the studio camera. A big challenge
was the correct lighting of the green box due to the different
props. It was important as the zoom was providing close-
ups. A Unity3D plugin allowed the use of the SDI output in
the PC, simplifying the workflow. Chroma keying was pro-
cessed in an external PC with four SDI inputs and was then
sent back through two SDI outputs to the video mixer.
Once all the signals were synchronized it was important
to route the cameras to their dedicated backgrounds and
setup the outputs to provide a single picture in the main
video mixer. An external video mixer was used to chroma
key the picture of the third camera, which was the wide shot
static camera (Fig. 4).

The final setup in the video mixer included the three com-
bined signals on input 1, 2 and 3, belly bindings (fill and

key) on input 5 and 6 and a PC with a video player on input
4. This setup allowed a simple workflow with the possibility
to change signals (Fig.4).

2.5 Graphics
To visualize the effectiveness and correct functionality of the
Unity3D script and the tracking system as well as to test the
performance in a live broadcast, a virtual background was
created. For the creation of the environment 3D model the
animation software Cinema 4D R17 was used.

- 2.5.1 Creating the set
The virtual background was created according to the theme
of the test live show, which was "Lost in Space". As usually,
television live sets are created in a simplistic fashion, this
project required a unique and uncommon shape.

It was important to construct the set within the same di-
mensions as the provided studio space. The green box is
roughly 8m wide, 6m long and 7m high (Fig. 5). The con-
structed studio set has a larger length for easier camera
movement and a smaller height for the feeling of an en-
closed room. After the model was finished, textures fitting
to the theme of the live show were created. This texture
required a metallic material with no reflections and shad-
ows as the virtual studio cannot display these attributes
of the physical set. A matte and rough surface fits these
conditions. To break up the shadows and reflections even
more, a bump map was added. Afterwards the textures
were lit out with consideration of the physical set, were then
rendered and connected to their corresponding polygon
meshes (objects). It was of great significance to have the
light temperature, intensity, range and diffusion match to the
possibilities of the physical set while being authentic within
the theme of the show.



- 2.5.2 Further work with Unity3D
During the baking process a normal map, light map and
base colour were exported as 5000 x 5000px. The resolu-
tion was high so the details of the map display well. Within
Unity3D these three image files (TIFF) were applied to the
"Bumped Diffuse Shader".

Figure 6: Virtual environment in
Unity 3D

Figure 7: Positioning of the
cameras and props on set

Figure 8: Shot from recorded live
show

It is important that the pivot point positions and rotations,
and the UVW-coordinates are imported correctly as well.
The FBX-file type keeps such information in addition to the
hierarchy of the objects (Fig 6).
Lastly, a virtual camera was created with the field of view
matching the corresponding physical camera.

2.6 Proof of performance
In order to showcase the functionality of the different com-
ponents under realistic circumstances a demonstration was
necessary. Therefore, a live show was deemed the best
option. In preparation, a TV show script was written, in-
tro videos, short 3D animations and live graphics with the
VizRT software were created as well as actors were casted.
The shoot took place in the TV Studio of the University Of
Applied Sciences, St. Pölten (Fig. 7).

The specially designed sensor mounting frames, rigidbod-
ies and the interface for the zoom tracking were mounted to
the physical cameras.
As the position of the camera varied a lot due to deviations
of the tracking system and the position of the rigidbodies,
the field of view (FOV) was adjusted manually for each
camera, depending on its position and angle. As a result
of that the FOV on each of the three cameras was slightly
different. For the live show, video textures were added to
the modeled screens of the studio. These were connected
to a short C# script for display during the live show.

As described above (Chapter 2.4) the signals from each

camera are synchronised through various computers and
video mixers to create the chroma key. Then these signals
are combined with the virtual background and sent to the
final video mixer, ready for broadcast.

3. Results and discussion
Recording the first live show was a successful test (Fig.
8) with results which are discussed in the following para-
graphs. These results can be applied in future broadcasts
and other studio productions.

3.1 Sensor Mounting Frame
The preparation process for creating the sensor mounting
frame was compounded by the fact that the exact measures
of the lens were not known and were measured manually.
The manufacturer could not supply the exact amount of
teeth on the gear either. Initially, in the mounting frame two
spaces for sensors were designed, each for zoom and fo-
cus. The recorded show only utilised the zoom sensor;
therefore the holder is still applicable for future recordings
and expandable for the focus sensor. The mounting frame
was specially designed for the cameras of the UAS St. Pöl-
ten. Yet as long as the camera lens and remote control for
the zoom and focus are similar, this frame can be used.

3.2 Unity3D script
During the recording the zoom worked best with a steady
slow speed, faster zooming disconnected the virtual back-
ground from the physical. To fix this issue, the zoom script
can either be adjusted to be faster or fill in the missing
steps automatically.
Due to malfunctioning sensor cables, limited resources and
time there was a problem tracking the zoom on multiple
cameras with the interface. A circuit, using a microcontroller
and a Wi-Fi module which sends the data from the sensor
to Unity3D, can be used in addition to the interface.



Furthermore, not all infrared (IR) cameras had the mounted
rigidbodies in their field of view. Due to that the the pan
and tilt were not tracked correctly. This was likely caused
by the small tracked space and the amount of equipment
and operators on set. Therefore only one camera had its
position tracked.For better tracking a wider tracked range
with extra IR cameras is necessary.
In addition to that a gimbal lock occurred during the ro-
tation of the cameras so the script was adjusted to use
quaternions. Due to the limited functionality of Unity3D
with quaternions and the engine translating Euler angles to
quaternions internally, Euler angles were chosen at first.Due
to the limited time and resources there the development of
the focus tracking was deemed unnecessary for the first
prototype. In order to synchronise the focus of the phys-
ical and virtual camera a calculation heavy process was
inevitable, so the hardware requirements were very high in
order to achieve realistic results.

3.3 Studio setup
Unity3D does not initially support HD-SDI while the video
studio is not equipped to use other means of interfaces to
transfer data to the video mixer. During the first tests an ex-
ternal video mixer was connected to the video mixer of the
studio with a DVI interface; this resulted in synchronisation
problems. An HD-SDI plugin for Unity3D was more desir-
able to solve the synchronisation problems.

3.4 Virtual background
The lighting in the green box was carefully created to elim-
inate shadows in order to achieve the best results in the
chroma key. The virtual set has numerous light sources to
match the lighting in the green box and the virtual set.
In order to make the zoom possible in Unity3D the position
and angle of the virtual camera was changed which led to a
slight deviation of the field of view between the virtual and

physical cameras. An adjusted script solved this problem.
The virtual set was at times unsteady due to the sensitiv-
ity of the tracking system; this problem can be resolved by
adding more cameras to the tracking system itself.

4. Conclusion
A major goal of this project was to keep the financial ex-
penses low. The university provided the project with the in-
terface for receiving position data, three out of the four used
sensors and a position tracking system. Within our limited
time frame we were able to keep the costs at approximately
500 euro. The created dynamic virtual studio system was
used for a live show to showcase its abilities. During this
live show this system proved to be capable of being used
for this purpose. There were minor problems during the live
show due to the limited time and resources but it was possi-
ble to create a presentable looking live show. Most of these
problems had a workaround which made it possible to cre-
ate a presentable looking live show with one mobile cam-
era, a static camera with the ability to zoom and another
static camera. The project could have been extended to use
smart glasses with a Unity3D program. The utilisation of
smart glasses can help the camera operators by visualis-
ing the virtual background. This is indeed a task for further
project groups.

The authors laid out a first working prototype for the UAS
St. Pölten and are thrilled that the further development,
enhancement and usage of this system will be continued by
the professors and students on campus.

Acknowledgments
We would like to thank: Christoph Thalinger for his exper-
tise in the video studio and his feedback, Markus Wagner
for his knowledge in Unity3D and Matthias Husinsky who
was always prepared to help us in different areas.


	1. Introduction
	2. Technical approach and setup
	2.1 Lookout on the market
	2.2 Sensor Mounting Frame
	- 2.2.1 Tracking the zoom and focus
	- 2.2.2 Tracking the position and rotation
	- 2.2.3 Manufacturing

	2.3 Unity3D
	- 2.3.1 Position tracking
	- 2.3.2 Zoom and focus tracking

	2.4 Production
	2.5 Graphics
	- 2.5.1 Creating the set
	- 2.5.2 Further work with Unity3D

	2.6 Proof of performance

	3. Results and discussion
	3.1 Sensor Mounting Frame
	3.2 Unity3D script
	3.3 Studio setup
	3.4 Virtual background

	4. Conclusion
	Acknowledgments

